Directions
AI 기술은 보안 취약점 자동 탐지 기술의 정확도를 한층 더 끌어 올리는데 크게 기여하고 있다. 이와 동시에, AI 자체를 대상으로 하는 보안 위협에 대한 대응 기술도 활발히 개발되고 있다.
Finding Robust Domain from Attacks: a Learning Framework for Blind Watermarking
SEUNGMIN MUN, Seunghun Nam, HANUL JANG, Dongkyu Kim, Heung-Kyu LEE
NEUROCOMPUTING
2019
Learning Deep Features for Source Color Laser Printer Identification based on Cascaded Learning
Kim, Do-Guk, Hou, Jong-Uk, Heung-Kyu LEE
NEUROCOMPUTING
2019
Real-Time Scheduling for Preventing Information Leakage with Preemption Overheads
백형부, 이진규, 이재원, 김평, Kang, Brent Byunghoon
Advances in Electrical and Computer Engineering
2017
[] []
An Enhanced Rule-Based Web Scanner Based on Similarity Score
MinSoo Lee, Lee, Younho, Hyunsoo Yoon
ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING
2016
[]
Data Randomization and Cluster-Based Partitioning for Botnet Intrusion Detection
Omar Y. Al-Jarrah, Omar Alhussein, Paul D. Yoo, Sami Muhaidat, Taha, K., Kwangjo Kim
IEEE TRANSACTIONS ON CYBERNETICS
2016
[] []
Estimation of Linear Transformation by Analyzing the Periodicity of Interpolation
Seung Jin Ryu, Heung-Kyu LEE
PATTERN RECOGNITION LETTERS
2014
[] []
Color Extended Visual Cryptography using Error Diffusion
Kang, InKoo, Arce, Gonzalo R., Heung-Kyu LEE
IEEE TRANSACTIONS ON IMAGE PROCESSING
2011
[] []